Search results

Search for "volatile organic compounds" in Full Text gives 31 result(s) in Beilstein Journal of Nanotechnology.

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • , petroleum constituents, and volatile organic compounds. Furthermore, the rate of ozonation is accelerated in alkaline media because hydroxide ions catalyze the decomposition of ozone and produce hyperactive hydroxyl radicals (•OH). Photocatalysis is a promising technique for removing POPs from water using
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • generated between layers of Bi-based materials [47]. Many researchers have revealed that Bi-based nanomaterials have an adequate photocatalytic capacity for pollution remediation, water splitting, and the elimination of volatile organic compounds. Bi-based photocatalysts have substantial oxidative
PDF
Album
Review
Published 11 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • volatile organic compounds (VOCs) with a remarkable degree of selectivity, which may promote the development of electronic nose systems for chiral analytes. Metal–organic frameworks. Metal–organic frameworks (MOFs) are unique porous crystalline materials fabricated by the self-assembly of metal ions or
PDF
Album
Review
Published 27 Oct 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • oxides, and various volatile organic compounds, is crucial in automotive, defense, aviation, chemical, medicine, and food industries [1][2]. Research on chemical sensors is currently focused on the fabrication of multisensor arrays for enhanced detection and identification of various chemical compounds
PDF
Album
Full Research Paper
Published 27 Apr 2022

Piezoelectric nanogenerator for bio-mechanical strain measurement

  • Zafar Javed,
  • Lybah Rafiq,
  • Muhammad Anwaar Nazeer,
  • Saqib Siddiqui,
  • Muhammad Babar Ramzan,
  • Muhammad Qamar Khan and
  • Muhammad Salman Naeem

Beilstein J. Nanotechnol. 2022, 13, 192–200, doi:10.3762/bjnano.13.14

Graphical Abstract
  • [28], wound dressings [29], sound adsorption [30], cosmetics [31], and sensor devices [32][33][34]. In filtration processes, electrospun nanofibers can be employed for removing volatile organic compounds (VOCs) from the atmosphere. To protect people from bacteria, viruses, smog, and dust, nanofibers
PDF
Album
Full Research Paper
Published 07 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • particulate matter. Ge et al. developed an electrospun nanocomposite with rare earth-fused polyurethane to adsorb volatile organic compounds, which are air pollutants [16]. Al-Attabi et al. fabricated a nanohybrid for the submicrometer aerosol particle size filtration by doping wrinkled silica into PAN via
PDF
Album
Review
Published 31 Jan 2022

A photonic crystal material for the online detection of nonpolar hydrocarbon vapors

  • Evgenii S. Bolshakov,
  • Aleksander V. Ivanov,
  • Andrei A. Kozlov,
  • Anton S. Aksenov,
  • Elena V. Isanbaeva,
  • Sergei E. Kushnir,
  • Aleksei D. Yapryntsev,
  • Aleksander E. Baranchikov and
  • Yury A. Zolotov

Beilstein J. Nanotechnol. 2022, 13, 127–136, doi:10.3762/bjnano.13.9

Graphical Abstract
  • qualitative detection of saturated vapors of volatile organic compounds due to configuration changes of the photonic bandgap, recorded by diffuse reflectance spectroscopy. The exposure of the sensor to aromatic (benzene, toluene and p-xylene) and aliphatic (n-pentane, n-heptane, n-octane and n-decane
  • detection of volatile organic compounds [30][31][32]. In most cases, the response of such sensors is a change in mass recorded using a quartz microbalance. A simpler design and research method made it possible to investigate in more detail the processes occurring during the absorption of solvents. The
  • vapors of volatile organic compounds have been determined [33]. In this work, we determined the parameters of the sensor structure and examined online the detection of high concentrations of aromatic and aliphatic hydrocarbon vapors in air. The detection was performed by using 3D PhC-based sensors, which
PDF
Album
Full Research Paper
Published 25 Jan 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • catalytic area, SnO2 is an emerging material for removing contaminants such as organic dyes, phenolic compounds, and volatile organic compounds (VOCs) due to strongly oxidizing properties thanks to flexible energy band structure, rich defects, good chemical, and high thermal stability, and easily controlled
PDF
Album
Review
Published 21 Jan 2022

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • plasmonic gold (Au) metasurface for sensing volatile organic compounds (VOCs) [49]. This modification enhanced the plasmonic field and local surface plasmonic resonance (LSPR). The influence of the gold nanodisk diameter and the average thickness of the TiO2 fractal on LSPR sensing of VOCs, specifically
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Nanogenerator-based self-powered sensors for data collection

  • Yicheng Shao,
  • Maoliang Shen,
  • Yuankai Zhou,
  • Xin Cui,
  • Lijie Li and
  • Yan Zhang

Beilstein J. Nanotechnol. 2021, 12, 680–693, doi:10.3762/bjnano.12.54

Graphical Abstract
  • generates electrical impulses when exposed to gas flow or pressure [91]. The material of the electronic skin can react with volatile organic compounds (VOCs) in the air, such as ethanol, as shown in Figure 2h. In addition to detecting whether the air contains VOCs, the output open-circuit voltage of the
  • [91]. (j) The response of smelling electronic skin to several volatile organic compounds [91]. Self-powered implantable sensors in vivo. (a) Structure of heart data sensor based on an iTENG, implantable wireless transmitter (IWT) and power management unit (PMU) [28]. (b) Comparison of the output of
PDF
Album
Review
Published 08 Jul 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • /WO3 composite and CO gas, a response time (Tres) of 7 min and a recovery time (Trec) of 2 min was determined. Keywords: gas sensing; magnetic measurements; nickel nanoparticles; reduced graphene oxide; tungsten oxide; Introduction Toxic gases as well as volatile organic compounds (VOC) are known air
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • dyes and DNA for the detection of damaged DNA [64]. Apart from biological samples, the identification of volatile organic compounds is another important field gaining the attention of researchers. Hairpin DNA and peptide sequences were integrated in a sensor design strategy to develop an optoelectronic
PDF
Album
Review
Published 09 Jan 2020

Multiwalled carbon nanotube based aromatic volatile organic compound sensor: sensitivity enhancement through 1-hexadecanethiol functionalisation

  • Nadra Bohli,
  • Meryem Belkilani,
  • Juan Casanova-Chafer,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2019, 10, 2364–2373, doi:10.3762/bjnano.10.227

Graphical Abstract
  • sensitivity (up to 17 times), selectivity and improves the response dynamics of the sensors. Keywords: gold-decorated MWCNTs; multiwall carbon nanotubes (MWCNTs); self-assembled monolayers (SAMs); sensitivity; selectivity; vapour sensor; Introduction Aromatic volatile organic compounds (VOCs) such as
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • formaldehyde over the other volatile organic compounds. This nanoarchitectonic strategy using molecular sieving effects of nanoporous frameworks can be applied to other targets of selected molecular size. Ultrathin films The immobilization of functional materials with ultrathin films such as self-assembled
PDF
Album
Review
Published 16 Oct 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • , different carbon nanotube sensors have been reported for detecting toxic pollutants emitted from vehicle exhaust [22][23], hazardous volatile organic compounds (VOCs) [24] or chemical warfare agents (CWAs) [25][26]. Usually, these modified carbon nanotubes improve the selectivity, because the chemical
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • composites with other materials such as graphene oxide or polyaniline has been reported to detect NO2 [17][18]. The decoration of CNTs with iron oxide has been reported for sensing different species in air such as acetone, CO2 and some volatile organic compounds [19][20][21]. Moreover, composites made of
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • rate at room temperature. In this review, we have summarized the latest progress of graphene/metal-oxide gas sensors for the detection of NO2, NH3, CO and some volatile organic compounds (VOCs) at room temperature. Meanwhile, the sensing performance and sensing mechanism of the sensors are discussed
  • most volatile organic compounds (VOCs). In general, people should not be exposed to an environment with more than 35 ppm NH3 for more than 15 min or an environment with more than 10 ppm CO for more than 10 min. Also, people should not be exposed to workplaces with more than 0.08 ppm formaldehyde for
  • to explore the ability to detect nonpolar and large molecules, such as volatile organic compounds (VOCs) which are extremely harmful to human health and the environment. The interaction of these molecules with graphene/metal-oxide sensors is different from that of the polar molecules, and graphene
PDF
Album
Review
Published 09 Nov 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • ] have been extensively applied for sensing of acetone, ethanol, toluene, formaldehyde and volatile organic compounds (VOCs). WO3 NFs functionalized by Au NPs exhibit improved VOC sensing properties. Noble metals onto metal oxide NFs reduce the activation energy, thus increasing their efficiency [109
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • Ag, Au, and Cu surfaces, showing that low intensity visible photon irradiation significantly enhances the rate of chemical reactions. A pioneering work showed that Au NPs have potential in degrading volatile organic compounds, HCHO to CO2, under 600–700 nm red light irradiation [168]. The same group
PDF
Album
Review
Published 19 Feb 2018

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • oxidation of low-concentration of CO [4], selective reduction of NOx with NH3 [5], and oxidation of volatile organic compounds (VOC) [6][7]. The catalytic activity of CeO2 is believed to originate from the reversible transformation between Ce4+ and Ce3+ and affected by various structural factors [8][9][10
PDF
Album
Full Research Paper
Published 16 Nov 2017

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • carried out simultaneously revealing the most representative compounds related to microbial grow (Table 2). In Figure 13, the content of five volatile organic compounds (VOCs) in the sample with contaminated water is given over a period of seven days. T0 is the day of inoculation, T1 is the measurement 1
PDF
Album
Full Research Paper
Published 06 Jun 2017

Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

  • Benjamin Baumgärtner,
  • Hendrik Möller,
  • Thomas Neumann and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2017, 8, 1145–1155, doi:10.3762/bjnano.8.116

Graphical Abstract
  • resistance, could be advantageous compared with the traditional powder or pellet form of silica based catalysts. For example, Joule heating of the contiguous carbon fiber felts offers additional benefits regarding desorption for their in situ regeneration in volatile organic compounds treatment processes [2
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2017

BTEX detection with composites of ethylenevinyl acetate and nanostructured carbon

  • Santa Stepina,
  • Astrida Berzina,
  • Gita Sakale and
  • Maris Knite

Beilstein J. Nanotechnol. 2017, 8, 982–988, doi:10.3762/bjnano.8.100

Graphical Abstract
  • determination of the concentration of volatile organic compounds (VOC). Therefore, with the wide usage of VOC, especially BTEX, there is a strong need for the development of new sensors that could easily, precisely and quickly determine VOC and their concentration. One of the examples for a VOC sensor is a
PDF
Album
Full Research Paper
Published 04 May 2017

Fiber optic sensors based on hybrid phenyl-silica xerogel films to detect n-hexane: determination of the isosteric enthalpy of adsorption

  • Jesús C. Echeverría,
  • Ignacio Calleja,
  • Paula Moriones and
  • Julián J. Garrido

Beilstein J. Nanotechnol. 2017, 8, 475–484, doi:10.3762/bjnano.8.51

Graphical Abstract
  • volatile organic compounds (VOCs) have received considerable attention. FOCSs for VOCs are generally based on indirect sensing schemes, depending on the wavelength, refractive index or fluorescence of an immobilized indicator probe or an optically detectable label that can be monitored [1][2][3][4][5][6
PDF
Album
Full Research Paper
Published 21 Feb 2017

Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO2 nanoparticles on a Si substrate

  • Urmas Joost,
  • Andris Šutka,
  • Meeri Visnapuu,
  • Aile Tamm,
  • Meeri Lembinen,
  • Mikk Antsov,
  • Kathriin Utt,
  • Krisjanis Smits,
  • Ergo Nõmmiste and
  • Vambola Kisand

Beilstein J. Nanotechnol. 2017, 8, 229–236, doi:10.3762/bjnano.8.25

Graphical Abstract
  • -toluenesulfonic acid (PTSA) and the film is made to absorb volatile organic compounds (VOCs). Since the color of the sensing element depends on the interference of reflected light from the surface of the film and from the film/silicon substrate interface, colorimetric detection is possible by the varying
  • cost-effective colorimetric gas sensing system utilizing the absorption of the analyte into a PTSA-modified thin film based on TiO2 NPs. Volatile organic compounds absorb into the PTSA surrounding the nanoparticles, and subsequently cause a significant swelling of the films. Thus, the optical path
  • metal-organic framework containing colloidal silica crystals [7]. The current sensor system, which is simpler and also cheaper to fabricate, gives a peak shift of approximately 4 nm in this concentration range. The color of TiO2 NPs thin films changes here after the absorption of volatile organic
PDF
Album
Full Research Paper
Published 24 Jan 2017
Other Beilstein-Institut Open Science Activities